当前位置: 主页 > 行业资讯 > 行业动态

python求解带约束目标优化问题(非线性规划,粒子群,遗传,差分进化)

2024-06-04 17:42   作者:佚名

算例1

书上的答案

该算例是一个带约束的目标问题

方法1 非线性规划 scipy.optimize.minimize
非线性规划原理就不讲解啦

针对算例1
求取一个函数的最小值。函数的参数可以是多个,但函数值只能是标量。

参数

  • fun : callable 目标函数
  • x0 : ndarry初始值
  • args : tuple, optional额外的参数,传给目标函数和它的导数。
  • method : str or callable, optional求解问题的算法名,下面选其一:Nelder-Mead, Powell, CG, BFGS, Newton-CG, L-BFGS-B, TNC, COBYLA, SLSQP,dogleg, trust-ncg默认是 BFGS, L-BFGS-B, SLSQP 之一,根据问题是否含有约束和界限自动选择。
  • jac : bool or callable, optional目标函数的梯度矩阵。只适用于 CG, BFGS, Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg。如果jac是一个 Boolean 且为 True,则 fun 被认为是梯度与目标函数一起返回。如果是False,则梯度会被自动地计算。jac也可以是一个函数,返回目标函数的梯度,且参数必须与fun相同。
  • hess, hessp : callable, optional目标函数的二阶导矩阵,或者二阶导矩阵乘以一个随机向量p。只适用于Newton-CG,dogleg, trust-ncg。hess和hessp只需要给出一个即可。如果提供了hess,则hessp会被忽略。如果两者都没有提供,则二阶导矩阵会被自动计算
  • bounds : sequence, optionalbounds 是参数的界限,只适用于L-BFGS-B, TNC 和 SLSQP,每个参数对应一个 (min, max),表示参数的上下限。如果只有一边界限,则另一边置为None。当约束是针对 x x x xx x xxxx 中的单个元素的上下限时,就可以用 bounds 参数来设置。
  • constraints : dict or sequence of dict, optional
    约束定义,只适用于 COBYLA 和 SLSQP。每个约束定义为一个词典,键值对包括:
    fun : callable。定义了约束函数。
    type : str。约束类型: eq’ 表示等式约束(fun等于0),ineq 表示不等式约束(fun大于等于0)。COBYLA只支持不等式约束。
    jac : callable, optional。fun 的梯度矩阵,只适用于SLSQP
    args : sequence, optional。传递给fun和jac的额外参数。
  • tol : float, optional迭代终止的允许误差。
  • options : dict, optional求解器的选项字典。所有的算法都接受以下的通用选项:maxiter : int。迭代的最大次数。disp : bool。如果是True则打印出收敛信息。
  • callback : callable, optional
    每次迭代之后调用的函数,参数为xk,表示当前的参数向量。

返回值
res:优化结果。

优化结果是OptimizeResult对象,重要属性如下:

fun 是最优值
x 是最优解
success 表示求解器是否成功退出。
message 描述了求解器退出的原因

 

方法2 粒子群pyswarm.pso
粒子群PSO优化算法学习笔记 及其python实现(附讲解如何使用python语言sko.PSO工具包)

pyswarm是一个支持带约束的粒子群优化包

sko.PSO中的pso仅支持带上下限的约束,不支持等式和不等式约束。

参数详解
pso(func, lb, ub, ieqcons=[], f_ieqcons=None, args=(), kwargs={},
swarmsize=100, omega=0.5, phip=0.5, phig=0.5, maxiter=100,
minstep=1e-8, minfunc=1e-8, debug=False)

  • func : function要最小化的函数
  • lb : array设计变量的下界
  • ub : array设计变量的上界
  • ieqcons : list在一个成功优化的问题中,长度为n的函数列表,使ieqconsj >= 0.0(默认值:[])
  • f_ieqcons : function返回一个一维数组,其中每个元素都必须大于或等于成功优化的问题中的0.0。如果指定了f_ieqcons,则忽略ieqcons(默认值:None)
  • args : tuple传递给目标函数和约束函数的附加参数(默认:空元组)
  • kwargs : dict传递给目标函数和约束函数的附加关键字参数(默认值:空字典)
  • swarmsize : int集群中的粒子数(默认值:100)
  • omega : scalar粒子速度缩放因子(默认值:0.5)
  • phip : scalar缩放因子搜索远离粒子最知名的位置(默认:0.5)
  • phig : scalar从蜂群最知名的位置搜索的缩放因子(默认值:0.5)
  • maxiter : int 最大迭代次数
  • minstep : scalar在searc终止前,群最佳位置的最小步长(默认值:1e-8)
  • minfunc : scalar在searchterminates之前群的最佳目标值的最小变化(默认值:1e-8)
  • debug : boolean如果为True,则每次迭代都会显示进度语句(默认值:False)

返回值

  • g : array群体最知名的位置(最优设计)
  • f : scalarg点的目标值
 

粒子群求得的值不一定是最优解

例子2

 

方法3 遗传算法

遗传算法原理及其python实现

使用工具from sko.GA import GA
参数详解
func, n_dim,size_pop=50, max_iter=200,prob_mut=0.001,
lb=-1, ub=1,constraint_eq=tuple(), constraint_ueq=tuple(),precision=1e-7

func : function .The func you want to do optimal
n_dim : int . number of variables of func
lb : array_like The lower bound of every variables of func
ub : array_like The upper bound of every vaiiables of func
constraint_eq : list .equal constraint
constraint_ueq : list . unequal constraint
precision : array_like. The precision of every vaiiables of func
size_pop : int .Size of population
max_iter : int. Max of iter
prob_mut : float .between 0 and Probability of mutation
Attributes
----------------------
Lind : array_like
The num of genes of every variable of func(segments)
generation_best_X : array_like. Size is max_iter.
Best X of every generation
generation_best_ranking : array_like. Size if max_iter.
Best ranking of every generation

 

同理很难找到最优解

方法4 差分进化算法

 
 

方法1:遗传算法做整数规划**
在多维优化时,想让哪个变量限制为整数,就设定 precision 为 1即可
例如,我想让我的自定义函数object_func 的第一个变量限制为整数,那么就设定 precision 的第一个数为1,例子如下

 

在这里插入图片描述
作者:电气-余登武。写作不容易,请点个赞再走。在这里插入图片描述

同类文章推荐
ai文章重新生成器,ai软件怎么做快速生成色块
什么是机器人流程自动化RPA
我省12个优化营商环境典型案例在全国推广
充足的近义词
鹅肉是发物?加速癌细胞生长或是4种食物
Win10 删除网络驱动器

咨询登记

平台注册入口